首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2855篇
  免费   664篇
  国内免费   179篇
  2024年   3篇
  2023年   103篇
  2022年   70篇
  2021年   135篇
  2020年   210篇
  2019年   222篇
  2018年   157篇
  2017年   197篇
  2016年   204篇
  2015年   223篇
  2014年   192篇
  2013年   244篇
  2012年   153篇
  2011年   151篇
  2010年   136篇
  2009年   182篇
  2008年   161篇
  2007年   161篇
  2006年   181篇
  2005年   143篇
  2004年   105篇
  2003年   91篇
  2002年   62篇
  2001年   50篇
  2000年   33篇
  1999年   34篇
  1998年   17篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   8篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1958年   1篇
  1950年   1篇
排序方式: 共有3698条查询结果,搜索用时 109 毫秒
21.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
22.
The pink, tubular, nectariferous flowers of Melocactus intortus (Cactaceae) in Puerto Rico are visited by native hummingbirds (Anthracothorax dominicus), but also by invasive honeybees (Apis mellifera) and ants (Solenopsis sp.). We sought to determine if the bees and ants significantly alter the pollination of M. intortus by measuring pollinator effectiveness. Using traditional estimates of effectiveness (visitation rate and seed set), our results show that hummingbirds were the most effective pollinators as expected. Bees and ants were less effective, and their contributions were one‐fourth to one‐tenth of that observed for hummingbirds. We then modified this measure of effectiveness by adding two components, fitness of progeny and temporal availability of visitors, both of which refine estimates of flower visitor effectiveness. With these new estimations, we found that the effectiveness values of all three animal visitors decreased; however, the role of hummingbirds as the principal pollinator was maintained, whereas the effectiveness values of bees and ants approached zero. By these new measures of overall pollinator effectiveness, the invasive honeybees and ants have little effect on the reproductive success of M. intortus.  相似文献   
23.
Biological invaders can have dramatic effects on the environment and the economy. To most effectively manage these invaders, we should consider entire pathways, because multiple species are dispersed through the same vectors. In this paper, we use production-constrained gravity models to describe movement of recreational boaters between lakes – potentially the most important pathway of overland dispersal for many aquatic organisms. These models are advantageous because they require relatively easily acquired data, hence are relatively easy to build. We compare linear and non-linear gravity models and show that, despite their simplicity, they are able to capture important characteristics of the recreational boater pathway. To assess our model, we compared observed data based on creel surveys and mailed surveys of recreation boaters to the model output. Specifically, we evaluate four metrics of pathway characteristics: boater traffic to individual lakes, distances traveled to reach these lakes, Great Lakes usage and movement from the Great Lakes to inland waters. These factors will influence the propagule pressure (hence the probability of establishment of invasive populations) and the rate of spread across a landscape. The Great Lakes are of particular importance because they are a major entry point of non-indigenous species from other continents, hence will act as the origin for further spread across states. The non-linear model had the best fit between model output and empirical observations with r2 =0.80, r2 =0.35, r2 =0.57, and r2 =0.36 for the four metrics, respectively. For the distances traveled to individual lakes, r2 improved from 0.35 to 0.76 after removal of an outlier. Our results suggest that we were able to capture distances traveled to most but not all lakes. Thus, we demonstrate that production-constrained gravity models will be generally useful for modeling invasion pathways between non-contiguous locations.  相似文献   
24.
We record here the introduction of the African catfish Clarias gariepinus into the Guaraguaçu River basin in Paraná State, Brazil, an area with an extremely rich endemic fish fauna, including many catfishes. C. gariepinus was introduced as escapees from ponds built for recreational angling. These catfishes are very large and hard predators, thus posing serious potential for impact on the native fish fauna. The impact of C. gariepinus needs study with emphasis on finding means for controlling its spread.  相似文献   
25.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood‐boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe, stimulating interest in delineating host and non‐host tree species more clearly. When offered a choice among four species of living trees in a greenhouse, adult A. glabripennis fed more on golden‐rain tree (Koelreuteria paniculata Laxmann) and river birch (Betula nigra L.) than on London planetree (Platanus × acerifolia (Aiton) Willdenow) or callery pear (Pyrus calleryana Decaisne). Oviposition rate was highest in golden‐rain tree, but larval mortality was also high and larval growth was slowest in this tree species. Oviposition rate was lowest in callery pear, and larvae failed to survive in this tree species, whether they eclosed from eggs laid in the trees or were manually inserted into the trees. Adult beetles feeding on callery pear had a reduced longevity and females feeding only on callery pear failed to develop any eggs. The resistance of golden‐rain tree against the larvae appears to operate primarily through the physical mechanism of abundant sap flow. The resistance of callery pear against both larvae and adults appears to operate through the chemical composition of the tree, which may include compounds that are toxic or which otherwise interfere with normal growth and development of the beetle. Unlike river birch or London planetree, both golden‐rain tree and callery pear are present in the native range of A. glabripennis and may therefore have developed resistance to the beetle by virtue of exposure to attack during their evolutionary history.  相似文献   
26.
Due to accidental introductions, the distribution of the east Asian topmouth gudgeon, Pseudorasbora parva, has rapidly expanded over recent years, thereby threatening the endangered Japanese species, P. pumila pumila. Sixteen microsatellite loci were isolated and characterized for P. parva, 14 being highly polymorphic (mean HE = 0.58, mean number of alleles = 4.4). Successful characterization of 10 of these loci was also achieved for P. pumila pumila. These markers should be useful in future investigation of colonization of P. parva and the development of conservation strategies for P. pumila pumila.  相似文献   
27.
Two species of obligate brood‐parasitic Cuculus cuckoos are expanding their ranges in Beringia. Both now breed on the Asian side, close to the Bering Strait, and are found in Alaska during the breeding season. From May to July 2017, we used painted 3D‐printed model eggs of two cuckoo host‐races breeding in northeastern Siberia to test behavioral responses of native songbirds on both sides of the Bering Strait, with particular attention to species that are known cuckoo hosts in their Siberian range. Each host nest was tested after the second egg was laid and, if possible, again 4 days later with a model of a different type. Although our Siberian study site was also outside the known breeding ranges of the cuckoos, we found that Siberian birds had strong anti‐parasite responses, with 14 of 22 models rejected. In contrast, birds in Alaska had virtually no detectable anti‐parasite behaviors, with only one of 96 models rejected; the rejecters were Red‐throated Pipits (Anthus cervinus). Such differences suggest that the cuckoos might successfully parasitize naïve hosts and become established in North America whether or not their historic host species are widely available.  相似文献   
28.
Weed risk assessment has become an accepted methodology for examining the likelihood and consequence of a plant species becoming invasive outside of its native range. Weed risk assessment draws upon biological and ecological information to estimate the likelihood and magnitude of the threats posed by introducing non-indigenous plants. In geographical terms, this has traditionally been understood as within a new country following importation of plant material. However, recent risk assessment development has focused more specifically on intracountry risk posed by already-present invasive plants and is referred to as post-border weed risk management. This form of assessment calls for fine-scale predictions of invasive species habitat suitability. This study applies some of the more popular and widely available habitat prediction models that represent a variety of different statistical approaches (linear regression, logistic regression, Bayesian probability, Classification and Regression Trees, Genetic Algorithm for Rule-set Production) to a single invasive plant, the vertebrate-dispersed, fleshy fruited European olive ( Olea europaea L.) in southern Australia. The relationships between the dependant ( O. europaea distribution) and independent (soil and climate) variables are used in the models to produce predictive maps for each model. Accuracy was calculated for each model output as well as a combined surface to examine whether recent calls for ensemble modelling of distributions produces improved predictions. Overall, the combined prediction demonstrated superior accuracy compared to any individual model outputs. The combined outputs can be likened to mapped gradations of predicted habitat suitability. The type of output produced in this study should form a critical component of post-border weed risk management but more importantly, the methodology will add to this important discipline.  相似文献   
29.
Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. These introductions resulted in the loss of rare alleles but did not significantly reduce genetic diversity and thus the evolutionary potential of this invasive species.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号